High Speed Steel

Similar Steels

AISI	ANFOR	B.S.	DIN	JIS
M2	A35-590 4301	BM2	1.3343	SKH51

• Chemical Composition

(wt%)

С	Si	Mn	Р	S	Cr	Мо	V	W
0.80	MAX	MAX	MAX	MAX	3.80	4.50	1.60	5.50
0.90	0.40	0.40	0.030	0.030	4.50	5.50	2.20	6.70

Remark: Cu: max. 0.25% Ni: max. 0.25%

Characteristics

- 1. High wear resistance and red hardness.
- 2. Secondary hardening carbide precipitate at high tempering temperature.
- 3. Fine carbide size and grain size with high toughness.
- 4. Low sulfur content with high cleanliness.

Application

For tools with high shock and impact resistance as well as high torsion stress:

- 1. Tooling Industry: End Mill, Drill, Punch, Tap, Reamer
- 2. Forging industry: Forging Mould, Press Mould
- 3. Moulding Industry: Mould, Screw Mould

• Heat Treatment

- 1. Annealing Heating slowly and uniformly to 800~850°C, furnace cooling to 600°C at a rate 10~20°C/h. Hardness HB 255 max
- 2. Stress Relieving 600~650°C and holding 2 hours. Furnace cooling.
- 3. Hardening -
 - Preheating (1): Preheat to 550~600°C, holding 20~30 minutes per 25mm.
 - Preheating (2): Preheat to 850~900°C, holding 20~30 seconds per 1mm.
 - Preheating (3): Preheat to 1050~1100°C, holding 20~30 seconds per 1mm.